skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petrisor, Ashley A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Not AvSelf-assembled polymeric micelles formed from amphiphilic block copolymers offer a promising strategy for enhanced drug delivery due to their biocompatibility and controlled release. However, challenges such as their poor colloidal stability under diluted conditions and degradation during storage and circulation limit their further applications. To address these issues, we developed a straightforward method for constructing cross-linked polycarbonate micelles that enhance stability while allowing for controlled stimuli-responsive drug delivery. By utilizing disulfide-based cross-linking and covalent conjugation of the anticancer drug, our approach maintains micelle integrity and extremely high drug loading over extended periods as well as the superior control of triggered drug release compared to non-cross-linked versions, demonstrating enhanced stability in complex biological environments and improved anticancer efficacy, presenting a novel platform for stable polymer–drug conjugate nanocarriers, holding significant therapeutic potential for targeted cancer treatment. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026